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Dynamic balancing of game difficulty can help cater for different levels of ability in players. However, performance in some game
tasks depends on not only the player’s ability but also their desire to take risk. Taking or avoiding risk can offer players its own
reward in a game situation. Furthermore, a game designer may want to adjust the mechanics differently for a risky, high ability
player, as opposed to a risky, low ability player. In this work, we describe a novel modelling technique known as particle filtering
which can be used to model various levels of player ability while also considering the player’s risk profile. We demonstrate this
technique by developing a game challenge where players are required to make a decision between a number of possible alternatives
where only a single alternative is correct. Risky players respond faster but with more likelihood of failure. Cautious players wait
longer for more evidence, increasing their likelihood of success, but at the expense of game time. By gathering empirical data for
the player’s response time and accuracy, we develop particle filter models. These models can then be used in real-time to categorise

players into different ability and risk-taking levels.

1. Introduction

In designing a popular game, it would be beneficial to have
a model of the ideal player. The designer could use this
player profile to design just the right amount of difficulty and
emotional impact into their game. No player would become
bored with easy challenges or overburdened by difficult ones.
All players could be fairly compensated for taking risks by
a well-calculated reward structure. Everyone who played the
game would receive the same optimal experience and level of
entertainment. Unfortunately for the designer, it is unlikely
that such an ideal player model exists.

To aid the design process, it is not unusual to categorise
players into different groups. A typical division of such
player types is the casual versus hard-core player, or the
experienced versus inexperienced player. Such categories
provide designers with general levels of player abilities
allowing them to design corresponding levels of difficulty
into the game mechanics.

The motivation for the designer is to balance game
difficulty with player ability in such a way that the game
is sufficiently challenging that it maintains interest and
entertains across the broadest possible range of player
abilities. This assumes that, to reward a player, their overall
satisfaction is solely dependent on game difficulty and their
ability to succeed in each challenge. However, there are other
types of reward that can also be important for players. For
example, how well the game allows the players to exercise
their desired level of risk taking.

In this paper, we develop a novel model of the player
using a technique known as particle filtering. Such a model
can incorporate various levels of player ability while also
considering the player’s risk profile. Once developed, such a
particle filter model is well suited to making dynamic adjust-
ments in game difficulty. To develop the model, however,
first requires the gathering of empirical data and fitting this
data into an appropriate particle filter for the game scenario.
This paper focuses on demonstrating the development of



such a particle filter model and illustrating how it can be
incorporated into the gameplay.

2. Utility and Risk

When considering player reward in terms of overall satis-
faction, it is convenient to use terminology associated with
economics, where overall satisfaction is described as “utility”.
The concept of utility can then be related to a person’s
preferred level of risk taking. For example, a typical division
of management styles would be risk seeking, risk neutral, and
risk averse [1]. Figure 1 relates these styles to utility, showing
that a risk seeker is only satisfied when the payback is high,
where conversely a risk averse individual is equally satisfied
at low returns.

While risk taking profiles are more typically related to
management styles or real-world activities such as gambling
or stock market trading, they are also relevant to game
designers. Risk taking profiles are particularly relevant for
gameplay that involves making decisions based on incom-
plete information. In a game situation, where players must
choose between alternatives, we could expect some players
to take more risks than others. We might also expect that
an individual’s level of risk is associated with their level of
enjoyment in the game. Risk seekers do not want to play it
safe and cautious players do not want to risk it all.

How then can a designer deliver the best entertainment
across the spectrum of risky and cautious players while also
catering for different levels of ability in players? In this paper,
we address this question by considering both the player’s
ability level and their risk-taking approach and describe how
to dynamically recognise and adapt the gameplay based on
these player attributes.

The dynamic modelling technique we use here is known
as particle filtering [2]. Particle filters are simulation-based
models that use sequential Monte Carlo methods. It is a
novel approach in gaming terms and although it has been
proposed as a way to incorporate intelligence into nonplayer
characters [3] we are not aware of it being previously used
for modelling players. Particle filters are promising models
for describing cognition, and in particular decision making,
as they involve updating beliefs about the state of the world
as evidence accumulates over time.

Particle filters can readily model various levels of ability
in human performance by just varying the number of
particles in the filter. For example, a large number of particles
can model statistically optimal behaviour, while a smaller
number generates predictions similar to flawed, human-like
behaviour.

Particle filters have been successfully used to account for
behaviour in a number of psychological domains including
language comprehension [4], categorisation [5], change
detection [6], and determining reward rate payoffs [7].

Another useful feature of particle filters is that they
can be updated in real time with a minimal computational
overhead. This makes the algorithm ideal for dynamic
balancing since the model can be included in the game
mechanics without impacting on the speed of the game loop.
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In the following section, we will briefly discuss dynamic
balancing and then go on to describe a specific decision-
making game challenge. We use this challenge to develop
a casual game for gathering empirical data about player
response time and accuracy in the challenge. The empirical
data allows us, via the particle filter model, to generate
estimates of both the player’s ability and their risk profile.
Finally, we illustrate how this model can be used to dynam-
ically recognise and adapt the gameplay for a continuum of
both novice to expert players, and risky to cautious players.

3. Balancing Difficulty

How should the designer adjust difficulty in a game chal-
lenge? Certainly, the difficulty of any game should normally
increase as the game progresses, trying to match the player’s
increasing level of skill or in game powers. But where does
the level of difficulty begin for each unique player? If the
difficulty level starts too low, the player may become bored;
if it starts too high, the player may become overwhelmed.

For the designer, the simplest approach is to allow players
to choose their own difficulty level. Over time, many games
in different genres have used this technique. The Atari 2600
console even provided a hardware switch to choose between
two difficulty levels in games like Adventure [8] and Aster-
oids [9]. More recent games such as Quake [10], Halo [11],
and Devil May Cry [12] provided more typical software-
based difficulty levels that the player could select. Many other
games provide adjustable difficulty settings allowing for easy,
normal, hard, and extreme play. These difficultly levels are
often given exotic names such as “piece of cake,” “let’s rock,”
“come get some,” and “damn I'm good” as used in Duke
Nukem [13].

The second approach to solving the difficulty level
problem is to dynamically measure player performance
during the game and adjust the difficulty based on how well
the player is performing. This approach has also been utilised
in a number of games. Some good examples are the third-
person shooter, Max Payne [14], Far Cry [15], Left 4 Dead
[16], and the Mario Kart [17] series of games. Indeed, the
technique was commonly used in racing games and became
known as “rubber-banding” as the mechanics of the game
were adjusted to ensure the player was always held close to
other cars, as if all the racers were held together by rubber
bands [18].

A key feature of good dynamic balancing is transparency
to the player. There is the danger that, when the mechanics
are adjusted, the difficulty no longer matches the narrative.
Left 4 Dead [16] attempts to overcome this problem by using
their “Al Director” which dynamically adjusts the game’s
dramatics and pacing along with the difficulty. For example,
spawning enemies are appropriately placed and numbered
based on the player’s current situation.

Dynamic balancing first requires identifying player abil-
ity followed by an appropriate adjustment of difficulty. Player
ability can be measured by any number of parameters such
as successful shots, life points, time to complete a task, or
indeed any values used to calculate the game score. This
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FiGure 1: Three different risk profiles relating utility and reward. Note how risk seekers are only satisfied with large rewards accompanied by
higher risks, while risk averse players prefer lower risk and reward decisions.

calculation has been called a “challenge function” [19] as it
relates to how challenging the player is finding the game in
its current state.

Depending on the game genre, typical adjustments to
game mechanics either enhance player ability or adjust the
ability of competing NPCs. Some examples include adjusting
the speed, health, power, number, or spawn rate of enemies
or the frequency or strength of player power ups. For
example, in Max Payne the game dynamically adjusts the
strength of enemies and can also provide different levels of
aiming assistance for players. In the Mario Kart games, lower

ranked players are more likely to receive items that improve
their speed in future races.

Different approaches have been suggested for dynamic
balancing. Hunicke and Chapman [20] and Hunicke [21]
developed a first person shooter, called Hamlet, that auto-
matically estimates the player’s current requirement for core
inventory items such as health, ammunition, shielding, and
weapons.

Adjusting the intelligence of the NPCs is another
approach that has been described. This can be achieved using
sets of rules with a probability or weight attached to each



rule and then dynamically adjusting the weight [22]. So, for a
novice player, the NPC might be more likely to behave based
on rules that are less effective and thus give the player a better
chance. Other techniques based on reinforcement learning
[23], and evolutionary algorithms [19], have also been used
to adapt the intelligence of NPCs for the player’s skill level.

The balancing approach by Yannakakis and Hallam [24]
is more closely aligned with our own technique, as it uses
experimental data from gameplay to develop a player model.
Their models use different types of artificial neural networks
that are trained through evolutionary techniques based on
game features and player entertainment. Their aim is to
predict the level of player satisfaction and adjust the game
accordingly.

Our study also uses experimental data to develop player
models but in the context of a decision-making challenge
that we describe in the next section. To create our player
models, we employ a novel technique called particle filtering
which allows us to model both player risk taking as well as
ability.

The idea of dynamic adjustment, however one imple-
ments it, rests on first measuring a player’s ability, and then
knowing how large an adjustment to make. Our model
provides help on both these problems. It aids in measuring
ability because it will not be “fooled” about a player’s ability
just because that player adopts an unusual level of risk or
caution. Also, it helps in knowing how large the adjustments
should be because it provides a predictive model of player
behaviour.

4. A Simple Decision Challenge

In our study, we first developed a simple decision-making
challenge where the difficulty became easier over time.
The challenge requires a player to choose between possible
alternatives where only one is correct. We describe the single
correct alternative as the “target” and the other, incorrect
possibilities as the “distracters.” The difficulty of the chal-
lenge can be adjusted by two means: increasing the total
number of distracters; or by increasing the similarity of the
distracters to the target.

Players perform best when they choose the correct
alternative as quickly as possible. However, the nature of
the challenge is that the target becomes more evident as
time passes. Because both response time and accuracy are
important measures of success in the challenge, the player
can be risky by responding earlier rather than later, but in
doing this they run a greater chance of choosing the wrong
alternative.

In our challenge, the possible alternatives consisted of 20
empty squares on a screen (Figure 2). As time passed, some
of these squares gradually filled with dark blue dots. This
was likened to raindrops filling a bucket and the player’s task
was to predict which bucket was filling the fastest. The filling
process was based on a probability distribution. For example,
time passed in discrete steps, and at each discrete time step,
the distracter squares had a 40 percent chance of gathering a
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new fill event (a blue dot), while the target square had a 50
percent chance.

The player must choose the target square as quickly
and accurately as possible. As time passes, the target square
is more evident as we expect the actual distribution of
raindrops to approach the probability settings. The closeness
of the probability distributions, between distracters and
target, affects the difficulty of the challenge and this is
one of the parameters under the designer’s control. The
other parameter that can be controlled is the number of
alternatives the player must choose from. In our challenge,
we allowed for up to 20 alternatives.

As the display evolves over time, we expect the decision
to become easier as the filling approaches the probability
distribution. As Figure 2 shows, even with a 10 percent
difference between the distracters and the target square, the
task is not trivial. We expect risky players to make a decision
quickly, based on little accumulated evidence. Because they
respond quickly with insufficient information, we also expect
them to make a number of incorrect choices. Note that
players with high ability in this task may also respond
quickly but would be more accurate. This demonstrates why
response time alone is not sufficient to distinguish the risk
profile of players and why we must also consider it in relation
to their accuracy in the task.

5. Collecting Player Data

To allow us to develop our player model for the task,
we first prototyped this simple challenge using Flash and
Actionscript in a nongame context. It was deployed online
and subsequently played by 31 first year psychology students
from the University of Newcastle. Each player completed a
total of 140 decision challenges from which we recorded
response time and accuracy.

The number of active squares (K) displayed on any
challenge was randomly chosen from K € {2,4,6,8,10},
subject to the condition that each K appeared equally often
for every player. The target square was randomly allocated to
one of the active squares.

During each challenge, the display evolved in discrete
steps of 15 events per second. We monitored this frame rate
during the game and only used data from players whose
computers met this frame rate. On each time step, each active
square either accumulated a new dot or not. The distracters
always filled with a probability of 40 percent while the target
filled with a probability of 50 percent. This means that, on
average, the target square accumulated 7.5 dots per second
while each distracter square accumulated approximately 6.0
dots every second.

At the start of a challenge all squares began with a
completely empty white background. Each time a new dot
was accumulated a 2 X 2 pixel area within the square changed
to a dark blue colour. The position of the new dot was chosen
randomly from the remaining unfilled area of the square.

Players were instructed to identify the target as quickly as
possible, but if they responded too early, they may incorrectly
select a square that had, by chance, collected the most dots
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FIGURE 2: Four screen shots showing a decision challenge with ten alternatives at different time periods. As time progresses each of the active
squares fill with dots based on independent probability distributions. In this case, the correct alternative is the square in the second column

of the second row.

so far in the challenge. Participants were free to watch
the display until they felt confident enough to make their
decision. They recorded their choice by simply clicking on
their chosen square.

After the participant chose a target square, a fast
animation illustrated many more fill events very quickly.
This rapid filling of the squares provided feedback to the
player on whether they had selected the target square. If the
player had correctly selected the target, a green outline was
displayed around the chosen square. If the player’s response
was incorrect the chosen square’s border was outlined in
orange, and the true target square was outlined in green.

The mean performance of all players in terms of response
time and accuracy is shown in Figure 3. Note how the average
performance decreases with the number of alternatives but is
higher than expected if players respond purely by guessing.
This data is consistent with what we know about such
challenges from Hick’s Law [25, 26]. Hick’s Law can be
expressed in a number of ways, the most simple stating that
mean response time (RT) and the logarithm of the number
of choice alternatives (K) are linearly related: RT = a +
blog(K). Hick’s law generally provides good descriptions of
data across many different types of decision-making tasks
(27, 28].

6. The Game Scenario

We next transferred the simple decision challenge into a
game scenario and made it available online. While the

mechanics of the challenge remained the same, however,
we provided a more elaborate backstory and integrated the
challenge into a simple gameworld (Figure 4).

Players were introduced to a game titled “EMFants: Last
Light” A mission brief informed participants they were
commander of Dark-Stealth-6, a spaceship with time-hop
propulsion, a “shadow-scope” to detect alien EMFants, and
“blue-ray” armament. The goal of the game was identified as
locating and destroying EMFants. Participants were provided
with a backstory describing the electromagnetic-feeding
(EMF) habits of the EMFant species. The EMFants escaped
from a twin universe and have been detected in numerous
galaxies. The player’s goal was to destroy the EMFants before
they rapidly spread to all known galaxies.

After the few introduction screens, players were informed
of the layout of the game. The game mirrored a typical
psychological experiment in structure, consisting of many
trials within multiple blocks, although the trials in the
game were described as “missions” that must be manually
controlled (i.e., click a “next mission button”). At the start of
each new block, players manually engaged Dark-Stealth-6’s
time-hop capabilities to navigate from one galaxy to another.
This initiated a short animation representing the time hop.

Players were required to use their shadow-scope to detect
the EMFant colonies. The shadow scope consisted of a
number of squares that were being filled with dots (as
in the original experiment). The EMFant colony growing
at the fastest rate indicated the home of the EMFant
queen (the target square). By clicking on the target, players
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FIGURE 3: Mean response time (a) and decision accuracy (b) for the simple challenge and contextualised challenge (unfilled and filled circles,

resp.).

FIGURE 4: The decision challenge as it appeared in the EMFants
game.

fired their blue-ray, described as an intense pulse of long-
wavelength radiation, to destroy the EMFant colony. Players
were informed that speed was essential to prevent EMFants
spreading to other galaxies. Players were also instructed that
accuracy was essential, since they only had one chance in
each mission to fire the blue-ray, and if they did not destroy
the colony of the queen, the EMFants would duplicate and
spread to other galaxies.

Once each decision challenge began it proceeded in a
statistically identical manner to the original simple experi-
ment described previously. When a player selected a square
the entire display quickly flashed blue as the blue-ray fired,
followed by an outline of green (for a correct answer) or
orange (for an incorrect answer) on the selected EMFant

colony. A correct answer was accompanied by a sound
of a cheering crowd. An incorrect answer produced a
disappointed “urrrgghh.”

The EMFants game was completed online by 28 first
year psychology students from the University of Newcastle.
Each player completed 140 decision challenges, from which
we recorded response time and decision accuracy. The
parameters for the decision challenges were the same as
the original challenge. Figure 3 demonstrates that player
performance from the EMFants game is almost identical to
the data from the simple version of the decision challenge.
We, therefore, used the combined data from 59 players and
over 8000 decision challenges to build our player model.

7. Modelling Players

Having collected adequate performance data, the next step of
the process was to design an adaptive model of players that
could both recognise the player’s ability level and their risk-
taking.

Assessing a player’s risk level is not quite as straightfor-
ward as it sounds because of the interplay between risk taking
and underlying ability. For example, a player who responds
faster than average might be relatively risky, or they might
instead have a very high ability level and are thus able to make
fast responses without taking undue risks.

To disentangle risk level and ability, we apply a particle
filter model to our empirical data to represent the player.
Particle filtering is a recent development in cognitive theory
[29] and provides a novel way of measuring a player’s risk-
taking profile and their underlying ability, without changes
in one of these two constructs contaminating measurement
of the other construct.
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Particle filters are sequential Monte Carlo methods that
approximate Bayesian posterior distributions. Particle filters
allow estimated posterior distributions to be updated as
new data arrive. These update algorithms do not require
integration over the entire history of observed data (as in
other integration methods, such as Markov Chain Monte
Carlo). The calculations, therefore, remain psychologically
plausible since they do not become increasingly taxing each
time new data are observed.

A particle filter begins with a set of particles, each of
which is treated as a sample from the posterior distribution
of interest. For example, in our game challenge each particle
represents a “guess” about which of the K choice alternatives
is the correct target. On each frame of the game challenge,
the particles are “evolved” to incorporate the new data that
arrive regarding the fill rates of the squares. This evolution
step usually involves resampling the particles according to
their likelihood. Particles consistent with the new datum have
a higher probability of being resampled. In contrast, unlikely
particles are inconsistent with the observed datum and hence
become rare over time.

We used the particle filter developed by Hawkins et al.
[29] to model data from the game challenges. This particle
filter model is illustrated conceptually in Figure 5. The
particle filter model includes a mechanism to track the
probability that each response option is the true target. This
mechanism corresponds to the player’s ability to differentiate
the fill rates of each alternative and so detect evidence about
which square is filling the fastest. A higher level of ability
is represented by more particles. The particle filter also
contains a decision mechanism to trigger a response based
on the evidence probabilities. In terms of game players, the
player’s risk profile is captured in this response triggering
mechanism. Higher risk players require less evidence than
cautious players.

In the model, each particle holds a number from 1 — K
corresponding to a belief about which square is the target. At
the beginning of a decision, particles are randomly sampled
from a uniform prior distribution. An illustrative set of P =
10 particles for a decision between K = 4 alternatives is
shown in the top row of the right-hand side of Figure 5. In
this example, three particles hypothesize that square 1 is the
target (which it actually is), two particles that the target is 4
and so on.

On each frame of the game challenge, a fill event either
occurred or did not occur in each square, and these are
represented by the “evidence increments” in the shaded
rectangle on the left of Figure 5. The uppermost row
illustrates that on the first time step of the decision challenge
a dot appeared in both of squares 3 and 4, but not in squares
1 or 2. The probability of this sequence of dots across the
squares can easily be calculated under the hypothesis of
each particle (assuming the true target and distracter fill
rates are perfectly known). These probabilities are used to
resample a new set of P particles for the next time step, with
replacement. The outcome of this resampling is shown by the
second row of particles.

After each time step of the decision challenge, the particle
filter estimates the posterior probability that each square is

the target by calculating the proportion of particles repre-
senting that square, illustrated by the histograms on the far
right side of Figure 5. These probability estimates represent
the output of the evidence tracking mechanism. The number
of particles in the filter controls the performance level, which
is analogous to the player’s ability. More particles make for
better performance as this represents a larger sampling size
and so a better approximation to the actual fill rates of the
target and distracter squares.

The model predicts that a response is triggered whenever
the largest posterior probability exceeds a criterion threshold
(c). This criterion parameter determines the risk profile of
the model, because a high probability threshold requires a
lot of evidence to make a decision, so responses are slow but
accurate (and vice versa for low probability thresholds). For
example, in Figure 5, if the threshold was set at ¢ = 0.8 the
particle filter would have incorrectly responded (with square
4) after the fourth time step, since eight out of ten particles
represented square 4 at that time.

For any particular ability level (i.e., number of particles,
P) and risk profile (i.e., decision threshold, c), the particle
filter model predicts a particular combination of accuracy
and mean response time. By comparing these predictions to
measurements from the game, we can abstract from raw data
measurements (accuracy and response time) to the deeper
psychological constructs of real interest: player ability and
risk profile.

Figure 6 illustrates this process using data from our
experiment. Each player’s data are represented on the graph
by a single plot point-determined by their mean accuracy
(y-axis) and mean response time (x-axis). The grey lines on
the graph show the particle filter’s predictions for varying
parameters. The close-to-straight lines show the predictions
for a fixed level of risk (either a low, medium, or high value
of the threshold parameter) and varying ability levels. The
curved lines show the converse—different levels of risk for
fixed ability. Comparing data against these predictions allows
easy categorisation of player ability and risk. For example,
data falling above the top curved line indicate very high
ability, and data falling to the right of the right-most straight
line indicate very cautious risk settings.

Figure 6 shows that the data from our experiments
almost all fall nicely within the range of data patterns
that the particle filter can predict, which suggests that the
model provides a useful description of performance in this
task. Note that the data from the two experiments (simple
challenge and EMFants challenge) are represented separately
in Figure 6 (unfilled and filled circles, resp.) but there appears
to be little difference in terms of accuracy and mean response
time.

8. Adjusting Game Difficulty

Having developed a particle filter model of the player, in this
section, we demonstrate how to use the model to adjust the
game mechanics appropriately.

Dynamic balancing first requires a player to be cat-
egorised in terms of their risk taking and ability. Our
experimentally collected response data is used as the basis
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of this grouping by considering the player’s comparative
response time and performance in the task. We can do this
by calculating the player’s mean accuracy and response time,
either from an introductory level or continuously during the
game by using a moving average.

The second aspect of dynamic balancing is the alteration
of the mechanics to meet the designer’s requirements for
the game. We should note that having a mechanism for
modelling the player in no way reduces the burden on the
designer to develop appropriate adaptations to the gameplay.
For means of example, we now provide description of one
such adaptation that might be useful.

Consider a situation where the designer would like all
players to meet an equivalent level of performance. For
illustrative purposes, we defined the target performance
level as the mean of response times and accuracy across
all our experimental players, which was about 8 seconds
and 60 percent accuracy. We then use the particle filter to
make theoretical predictions of how we should change the
probabilities for target and distracter buckets to try to achieve
a set level of performance in two example players.

Previously, in Figure 1 we illustrated three basic types of
risk taking and the associated player utility. In this work, we
took two representative participants, one with high ability



International Journal of Computer Games Technology

Risk
averse
0.9 I °
neutral @ P = 1000 (skilled player)
g 0.8 @)
= L]
% 0, ° o o
s Risk o P = 400 (intermediate player)
o seeking FYE )
g
= o6 | o g ¢ O
o 0.6 ® e O
3 o ? P =200 (novice player)
= o %%
L
= 05 9 883
®
04 Q)
B 0 .
0.3
1 1 1 1 1 1 1
0 5 10 15 20 25 30

Mean response time (seconds)

Figure 6: Data and particle filter model predictions from the
experiment.

who was risk neutral and one with low ability who was risk-
seeking, marked in Figure 7 with the green and blue dots,
respectively.

To approach the target performance level, we want
the risk-seeking low ability player to increase mean task
accuracy from their current score of about 0.48 to 0.6, and
increase mean response time from about 4 seconds to 8
seconds. To increase response time, we need to reduce the
fill probabilities (so squares fill more slowly), and to increase
accuracy, we need to increase the difference between target
and distracter fill probabilities (so the target “stands out”
more than the distracters, and the participant makes fewer
errors). For this participant’s ability level and risk profile, the
particle filter predicts that we should change the target fill
rate from 50 percent to 18 percent, and distracter fill rates
from 40 percent to 10 percent.

In contrast, for the risk neutral high-ability player to
approach the target performance level, we want to decrease
mean task accuracy from their current score of about 0.72
to 0.6, and decrease mean response time a little, towards
8 seconds. To maintain response time, we need to increase
the overall fill probabilities a little (so squares fill a little
more quickly), and to decrease accuracy, we need to decrease
the difference between target and distracter fill probabilities
(so the target is harder to differentiate from the distracters,
and the participant makes more errors). For this participant,
the particle filter predicts that we change the target fill rate
from 50 to 80 percent, and distracter fill rates from 40 to 72
percent.

9. Discussion

Particle filters have considerable potential as models of
cognition, and in particular decision making, as they involve
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FiGURE 7: Player ability and risk profile can be measured dynam-
ically to identify particle filter size (P) and decision threshold (c)
parameters. These parameters can be used to adjust the degree of
similarity between distracters and target and move different types
of players to the same target performance.

updating beliefs about the state of the environment as
evidence accumulates over time. By varying the number of
particles in the filter the model can approximate a range
in performance. For example, a large number of particles
can model statistically optimal behaviour, while a smaller
number generates predictions similar to flawed, human-like
behaviour.

We investigated the use of particle filters for modelling
players who undertake a decision-making challenge, where
there are multiple alternatives and the player accumulates
evidence over time. For such a task, it is desirable to
understand players’ risk versus caution profile, as well as
their underlying ability level. Neither of these underlying
psychological properties can be unambiguously inferred
from raw observation of accuracy and response time.

Rather than developing ad hoc methods of combining
the two measures into some composite, we have imported
an appropriate decision theory from cognitive psychology
that supports fast and efficient estimation of players’ risk
profile and ability. This approach does require some previous
testing with players to gather empirical data. In this work,
we illustrated this approach by gathering experimental data
about player performance and using this to develop a model
of player performance. Using this model, we demonstrated
how difficulty level could be adapted during gameplay using
the predictions of such a particle filter.

In this case, particle filters provided an efficient mech-
anism to develop such dynamic player models, providing
parameters, P (the number of particles), and ¢ (the decision
threshold) that intuitively relate back to the underlying
decision challenge. This intuitive relationship can be impor-
tant for the designer, where a good understanding of
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the underlying mechanics can assist with other adaptations
required in the gameplay. Making such online gameplay
adaptations is an important step towards designing and
developing games that ensure maximal reward for the widest
possible range of player profiles.
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